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Abstract

The primary objective of this paper is to develop a statistically valid classification procedure for analyzing brain image

volumetrics data obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) in elderly subjects with cog-

nitive impairments. The Bayesian group lasso method thereby proposed for logistic regression efficiently selects an

optimal model with the use of a spike and slab type prior. This method selects groups of attributes of a brain subregion

encouraged by the group lasso penalty. We conduct simulation studies for high- and low-dimensional scenarios where

our method is always able to select the true parameters that are truly predictive among a large number of parameters.

The method is then applied on dichotomous response ADNI data which selects predictive atrophied brain regions and

classifies Alzheimer’s disease patients from healthy controls. Our analysis is able to give an accuracy rate of 80% for

classifying Alzheimer’s disease. The suggested method selects 29 brain subregions. The medical literature indicates that

all these regions are associated with Alzheimer’s patients. The Bayesian method of model selection further helps

selecting only the subregions that are statistically significant, thus obtaining an optimal model.
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1 Introduction

Alzheimer’s disease (AD) is the sixth leading cause of death in the United States. It is a form of dementia in which
patients suffer loss of memory where they fail to identify people or objects, have difficulty with speech and, in later
stages, are unable to perform daily life activities like getting up from the bed or brushing their teeth. Although it is
mainly a disease of old age affecting people who are 65 or older, early onset of the disease can occur in 40 or
50 year olds in up to 5% of cases. AD is the most common case of dementia amounting to 60%–80% of all cases.
It is a progressive disease where symptoms worsen over time. AD affected patients live an average of 4–20 years
after the symptoms become noticeable. Medical scientists are yet to find a cure for Alzheimer’s but it is possible to
slow down the worsening of dementia and improve lifestyles of both the affected people and their caregivers.
According to recent studies (Leifer1) early detection of AD is extremely helpful as it can be treated with novel
drugs to delay AD progression. Extensive studies are being conducted to find a treatment for AD, delay its onset
or curb its advancement. More information and facts about AD can be found at www.alz.org.

Dedicated research is done with neuroimaging techniques for early diagnosis of AD. Alzheimer’s Disease
Neuroimaging Initiative (ADNI) conducts multi-center case-control study of elderly people that was designed
to find more sensitive and accurate methods to diagnose AD at earlier stages. ADNI studies use brain-imaging
techniques, such as positron emission tomography (PET) and magnetic resonance imaging (MRI). ADNI
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database has data from three phases (ADNI1, ADNIGO, and ADNI 2). MRI data points were obtained from
1737 subjects with baseline diagnosed as Normal, mild cognitive impairment (MCI), and AD. For all subjects at
each visit, structural MRI scans were acquired from 1.5 T scanners for ADNI1 subjects and from 3T scanners for
ADNIGO and ADNI2 subjects. MRI protocols were performed across a variety of scanners such as GE, Siemens,
or Philips to ensure comparability. MRI volumes were computed using FreeSurfer by UCSF/SF VA Medical
Center. ADNI1’s 1.5 T data were run with FreeSurfer version 4.3 and ADNIGO and ADNI2’s 3 T data were run
with FreeSurfer version 5.1.

Historically, studies have shown that AD causes abnormal change to brain region volumes which causes
shrinkage in the hippocampal volume or reduction in its thickness or enlargement of internal ventricles. Smith
et al.2 studied structural brain alterations before MCI. They had previously demonstrated that volume loss in
bilateral anteromedial temporal lobe is present at baseline in longitudinally followed normal subjects who later
developed MCI or AD. Arlt et al.3 believed that fully automated MRI-based volumetric measurements may serve
as a biomarker for the diagnosis in patients with MCI or dementia. They concluded that fully automated MRI-
based volumetry allows detection of regional gray matter volume loss that correlates with neuropsychological
performance in patients with amnestic MCI or mild AD. Our objective in this paper is to predict dementia in
patients based on the volumetric measurements obtained from the MRI ADNI data. There is evidence of brain
atrophy with increasing age but the atrophies differ significantly from normal aging to AD patients. We use the
differences of brain region atrophies to distinguish subjects with or without AD. The volumetric data have brain
parcellated subregions of the entire brain for the left and right hemispheres. Volume, area and thickness measure-
ments of brain subregion is a simple way of detecting atrophied brain regions, thus the motivation of combined
use of these measurements. It is believed that all these regions are not associated with dementia, but only a few
(Haroutunian et al.,4 Shivamurthy et al.5). Identification of a few brain regions from the large pool of regions
makes appropriately a dimension reduction problem.

Numerous methods have been developed for the analysis of ADNI data to identify the brain subregions that
are disease related. These methods usually single out a region of interest (ROI) and perform a univariate analysis
based on the chosen ROI (Luo and Nichols,6 Grimmer et al.7) Univariate analysis of ROIs neglects the effect of
other significant ROIs. These methods aim at analyzing each hypothesized significant ROI and then looking at
multiple hypothesis where careful adjustment of multiple comparisons have to be looked at. To include all the
ROIs for analysis simultaneously, a regression framework seems plausible such that the model itself selects the
most significant regions. However, due to high number of candidate ROIs, the standard regression analysis is not
possible. The good thing is, there is a medical belief that only a few ROIs are informative for characterizing AD.
Thus, a dimension reduction technique such as penalized regression can be developed. The ADNI MRI database
has volume, area, and thickness measurements of various brain regions. Since these measurements are a direct
manifestation of brain region atrophies, we should consider them as a single variable with multiple levels. Thus,
the number of regression parameters (brain subregions with all levels) may exceed the number of patients being
studied. There are a number of competitive penalized regression techniques that have been developed in recent
years. Least absolute shrinkage and selection operator (LASSO8) is perhaps the most popular technique among
all. However, the direct use of LASSO is not appropriate in the presence of multiple levels of a covariate in feature
selection models. We employ, instead, a group lasso technique to build a model since it places group penalty on
the parameters of a variable (feature) which makes easy selection of the whole set of volumetric measurements for
an ROI. We treat different measurements of the same subregion as different levels of a covariate in this regression
setup. Thus, it is easy to visualize structured correlation in the matrix of covariates (subregions) establishing the
motivation of using a group lasso like method. The acuteness of AD makes its early detection imperative which is
why classification of a subject into healthy individuals or AD patients is of immense importance. We have
developed logistic regression in Bayesian setup for detection of AD for getting more reliable standard error
estimates.

In this article, a Bayesian group lasso type technique has been developed with spike and slab prior following Xu
and Ghosh9 over other types of penalized regression because this approach presents many natural advantages.
The biggest advantage is that the Bayesian approach provides reliable estimates of uncertainty which can be used
for statistical inference beyond feature selection. A thorough literature review has shown that the Bayesian group
lasso with logistic regression model is largely overlooked. This article develops this novel method motivated by the
ADNI data. Bayesian group lasso with spike and slab prior deals with feature selection (dimension reduction) in a
binary outcome scenario and produces reliable estimates for regression coefficients. Unlike commonly used
Bayesian variable selection methods, we propose median thresholding to make insignificant coefficients are exact-
ly zero. Another major contribution of this paper is that we look at the brain image volumetric data at a granular
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level. We consider all available brain subregions mapped by FreeSurfer to include effects of all ROIs rather than

looking at individual ROIs. An atrophied brain subregion is identified by selecting a group of volumetric measure-

ments of the corresponding selected ROI. Zhang et al.10 performed classification with MRI data based on 93

manually labeled ROIs. We use data of 116 automatically labeled ROIs (each having four different measure-

ments) by FreeSurfer and treat this as a multivariate problem to perform a dimension reduction analysis. Zhang

et al.10 used a composite of three different modalities of biomarkers. Unlike Zhang et al.,10 our method provides

reliable parameter estimates which can be used to calculate the log of odds or relative risk of AD based on the

selected subregions instead of solely classifying subjects. Group lasso encourages selection of all levels of a

significant subregion, and spike and slab prior together with median ensure that a large number of subregions

which have no impact on the disease are dropped from the model. So, the proposed method selects affected brain

subregions automatically from a large pool of brain subregions. Furthermore, among the selected subregions only

a few volumetric measurements serve as discriminative features in the model assessed by their statistical signif-

icance. So, we are able to narrow down the regions and their corresponding attribute that should be studied by

scientists to stop progress of the disease or improve the quality of life of the affected individuals. Finally, we have

provided theoretical foundation to our proposed methodology.
The rest of the paper is organized into seven sections. In Section 2 we have reviewed the literature of group

lasso and Bayesian group lasso and then in Section 3 we have elaborated on Bayesian group lasso in logistic

regression setup. Section 4 shows the posterior consistency of our estimator, i.e. the model selected by the pro-

posed method converges to the true model for sufficiently large n. In Section 5 we have conducted a simulation

study to test the performance of the proposed method. Section 6 contains the analysis on the ADNI dataset where

we detail out our findings and our concluding remarks are in Section 7.

2 Group lasso

Variable selection is a technique of selecting an optimal model in predictive modeling. In many regression

problems, we are interested in selecting feature variables that are important in predicting the response variable.

The feature variables can be individual numeric variables, various levels of a categorical variable or a number of

basis functions of the original measured variables. Recently proposed methods like the LASSO, SCAD (smoothly

clipped absolute deviation11), etc. can efficiently perform variable selection by selecting individual feature vari-

ables. In case of an ANOVA (Analysis of Variance) type model where there are multiple levels of a feature

variable or for an additive model where each component is a linear combination of a number of basis functions,

selecting the important variable amounts to selecting all levels of the variable.
A very simple linear regression equation is of the form

Yn�1 ¼ Xn�p bp�1 þ �n�1 (1)

Here, X is the design matrix whose columns are the feature variables, b is the vector of coefficients, is the error

vector where each �i has a normal distribution with mean zero and variance r2 and Y is the vector of observations.
Each feature variable in equation (1) can be either categorical or continuous. ANOVA is a special case where

all the input variables are categorical whereas an additive model is a special case of all continuous input variables.

However, the input variables could be a mixture of both numeric and categorical variables in a regression problem

given by equation (1).
When we want to work with factor variables with G factors (groups), we can modify our notations in equation

(1) as follows

Yn�1 ¼
XG
g¼1

Xgbg þ � (2)

where �n�1�Nn 0; r2In
� �

; bg is a coefficient vector of length mg, and Xg is an n�mg covariate (feature) matrix

corresponding to the factor bg, g¼ 1,. . .,G. Let p be the total number of predictors, so p ¼PG
g¼1 mg. To

eliminate the intercept from equation (2), we center response variables and each input variable so that the

observed mean is zero.
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The goal is to select important feature variables for accurate prediction. This amounts to selecting as well as
estimating the parameter coefficients. Traditional approaches such as subset selection or stepwise procedures can
be used for variable selection. Subset selection is impractical when there are a large number of predictors in the
model since the number of candidate models grow exponentially as the number of predictors increase. Breiman12

showed that subset selection methods are not satisfactory with respect to prediction accuracy and stability.
Stepwise procedures, on the other hand, often lead to locally optimal solutions rather than globally optimal
solutions. However, there are several optimization techniques that help to find exact (global) optimal solution in
the field of optimal design of experiments and clinical trials (Hore et al.,13 Hore et al.14). A variable neighborhood
search algorithm coupled with a stochastic approach can be used for finding the optimal solution (Hore et al.15).
These approaches are primarily used in clinical trial settings and have not been explored sufficiently in optimi-
zation problems related to other disciplines. The drawback of traditional methods indicates the need for devel-
opment of sophisticated variable selection methods. Tibshirani8 proposed the LASSO method. In this approach
we minimize

Xn
i¼1

Yi � Xibð Þ2 þ k
Xp
j¼1

jbjj (3)

where k is the tuning parameter. This penalized approach forces many bs to take zero values. The LASSO is an
attractive tool due to simultaneous estimation and variable selection. When the need for selecting a group of levels
of a categorical variable or group of basis functions representing a numeric variable arises, these methods fail
because they are designed to select individual feature variables and fail to select whole factors. Yuan and Lin16

proposed group lasso as an alternative to LASSO in terms of factor selection and also exhibit superior model
selection performance.

The group lasso penalty is a hybrid of the l1 and l2 penalties and encourages selection at a group level. The
group lasso estimate, for linear regression, minimizes

����Y�
XG
g¼1

Xgbg

���� 22 þ k
XG
g¼1

kbgk2 (4)

where k is the tuning parameter. Note that equation (3) is a special case of equation (4) when all groups have size
1, i.e. m1¼m2¼ ���¼mG ¼ 1.

2.1 Bayesian Group lasso. The limiting distribution of the group lasso estimator is complicated (Knight and
Fu,17 Chatterjee and Lahiri18). Thus, this estimator fails to give meaningful standard errors of the estimates which
affect the statistical significance of the covariates in the chosen model. To deal with this drawback of frequentist
lasso type estimators, Bayesian formulations have been developed. The Bayesian MAP estimators provide reliable
standard errors for the estimates.

It is known that the lasso estimator for linear regression is equivalent to the posterior mode with
independent Laplace priors on each regression coefficient. Park and Casella19 developed a fully hierarchical
Bayesian setup for the lasso using a scale mixture prior on the regression parameters. This mixture prior
results in a Laplace marginal distribution for b. This idea has been further extended by Kyung et al.20 to build
similar fully Bayesian Hierarchical models for group lasso, fused lasso (Tibshirani et al.21) and the elastic net
(Zou and Hastie22). They employ a multivariate mg-dimensional Laplacian prior over each group of regression
coefficients

p bg
� � / exp � k

r
jjbgjj  2

� �
(5)

The classical group lasso is recovered as the MAP solution in log-space with k
r having the role of a fixed

Lagrangian multiplier. For a full Bayesian treatment, however, we place hyperpriors on k and r which lead to
integrations that are analytically impossible to solve.
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For finding closed form posterior distributions for all parameters, we extend the hierarchical

scale mixture model approach of lasso to grouped predictors. Thus, we express the prior as a scale

mixture of multivariate normals over bg with Gamma hyperpriors over the variance hyperparameter.

Specifically, with

bgjs2g; r2�indNmg
0; s2gr

2Img

� �
; s2g�indGamma

mg þ 1

2
;
k2

2

	 

(6)

the marginal distribution of bg is of the form (5). This Bayesian formulation encourages shrinkage at the group

level and provides comparable prediction performance with the group lasso. However, estimation of bg by its

posterior mean or median does not produce exact zero estimates; we need to bring in the concept of sparsity here.

Thus, to introduce sparsity at group level, Xu and Ghosh9 assumed a multivariate zero inflated mixture prior or a

spike and slab prior for each bg.
For variable selection, we want the estimates to produce exact zeroes such that they are dropped from the

model. Zero inflated mixture priors are such that the slab part draws values from a known distribution and

the spike part is degenerate distribution selecting zero. Xu and Ghosh9 further showed that median thresholding

is better than using posterior mean. The spike and slab prior keeps the scale mixture prior of normals and

gamma intact thus providing full conditionals. This approach is thus computationally easy and gives exact

zero estimates. Narisetty and He23 used shrinking and diffusing priors for variable selection in a hierarchical

Bayesian setup.
Zero inflated mixture priors, in recent years, have been extensively utilized in Bayesian variable selection

setups. George and McCulloch24 used zero inflated normal mixture priors in the hierarchical formulation for

variable selection in a linear regression model. Chen and Dunson25 used a spike and slab type prior for the

random effects variances in a linear setup allowing probabilistic selection of random effects. Also see Zhao and

Sarkar,26 Lykou and Ntzoufras,27 and Zhang et al.28 Heavy tailed distributions, such as double exponential, are

often used as the slab part. The slab part can be further segmented to a scale mixture of normal and gamma

distributions as is done by Xu and Ghosh.9

The following hierarchical Bayesian formulation with spike and slab prior for linear regression (2) comparable

to a group lasso type estimator is proposed by Xu and Ghosh9

YjX; b; r2�Nn Xb; r2In
� �

;

bgjr2; s2g ; p0�ind 1� p0ð ÞNmg
0; s2g r2Img

� �
þ p0d0 bg

� �
; g ¼ 1; . . . ; G

s2g�indGamma
mg þ 1

2
;
k2

2

	 

; g ¼ 1; . . . ;G;

r2�Inverse Gamma a; cð Þ; r2 > 0;

p0�Beta a; bð Þ;

k kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pþ GPG
g¼1 Ekðk�1Þ s2gjY

� 
s

where d0(bg) denotes a point mass as 0 2 Rmg,bg ¼ (bgm1
,. . .,bgmg

)T. The posterior expectation of sg
2 will be replaced

by the sample average of sg
2 generated in the Gibbs sampler based on k(k�1). The value of k should be carefully

tuned. A large value of k will overshrink the estimates while a small value will lead to overfitting. Xu and Ghosh9

suggested a conjugate Gamma prior can be placed on k2. Using an empirical Bayes approach, k is estimated from

data using marginal maximum likelihood. Since marginal maximum likelihood of k does not have a closed form, a

Monte Carlo EM algorithm (Park and Casella19 and Casella29) can be used to estimate k. The kth EM update for

k is given in the above setup.
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3 Bayesian group lasso with logistic regression

So far we have talked about group lasso in a linear regression setup, i.e. when the response variable has a
Gaussian error. In many practical problems, we come across response values that cannot be fitted into a linear

model. For example, when the outcome is a binary categorical variable, count data or multi-level categorical
variable, then the Gaussian error assumption does not hold. In such cases we have to use generalized linear
models (GLM) with various link functions. Since, the occurrence of binary outcome is very common in the real

world, we will focus on GLM with a logit link.
Since, the outcome is binary we cannot model this data with equation (1) having normal errors. Meier et al.,30

developed the logistic group lasso in a frequentist setup. Before delving into its Bayesian counterpart, let us
summarize the frequentist group lasso in logistic regression setup.

Assume that we have independent and identically distributed observations (xi,yi),i¼ 1,. . .,n, of a p-dimensional
vector xi 2 Rp of G predictors and a binary response variable yi 2 {0,1}, where each group has mg levels. We can

write xi ¼ xTi1; . . . ; xTiG
� �T

. Linear logistic regression models the conditional probability pb(xi)¼Pb(Y¼ 1|xi) by

log
pb xið Þ

1� pbðxiÞ
� �

¼ gb xið Þ

also known as the logit link with the link function

gb xið Þ ¼
XG
g¼1

xTigbg

The logistic group lasso estimator, bGL, is given by the minimizer of the convex function

Sk bð Þ ¼ �l bð Þ þ k
XG
g¼1

kbk2

where l(.) is the log-likelihood function i.e.

l bð Þ ¼
Xn
i¼1

yigb xið Þ � log 1þ exp gbðxiÞ
� �� � �

The tuning parameter k � 0 controls the amount of penalization.
Motivated by Xu and Ghosh9’s work, we construct a Bayesian formulation for the logistic regression case.

Here, our likelihood is Bernoulli probability mass function with a logit link. We abide by using a multivariate zero
inflated mixture prior with point mass at zero and the continuous part as double exponential distribution. Since a
double exponential prior on bg can be expressed as a scale mixture of normal and Gamma priors (as in (6)), we use

priors very similar to the linear setup

yijxi; b � Bernoulli
ex

T
i b

1þ ex
T
i
b

 !
; i ¼ 1; . . . ; n;

bgjs2g ; p0 �ind 1� p0ð ÞNmg
0; s2g Img

� �
þ p0d0 bg

� �
; g ¼ 1; . . . ; G;

s2g�indGamma
mg þ 1

2
;
k2

2

	 

; g ¼ 1; . . . ;G;

p0 � Beta a; bð Þ
The full posterior conditional distributions are as follows

p b; s2; p0jY;X
� �

/
Yn
i¼1

ex
T
i b

1þ ex
T
i
b

 !yi
1

1þ ex
T
i
b

	 
1�yi

2
4

3
5 /

YG
g¼1

1� p0ð Þ 2ps2g
� ��mg

2

e
�bTg bg

2s2g I bg 6¼0½ � þ p0d0 bg
� �" #

/
YG
g¼1

k2ð Þ
mgþ1

2 s2g
� �mgþ1

2 �1

e�
k2s2g
2 / pa�1

0 1� p0ð Þb�1
(7)
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We can simulate an efficient block Gibbs sampler to simulate from the posterior distribution above.
Details of the block Gibbs sampler is part of the supplemental material.

4 Posterior consistency

Xu and Ghosh9 showed that the posterior median is an adaptive thresholding estimator for a linear regression

setup. Theorem 1 in their paper gives a proof of this idea. We will extend this idea for logistic regression model

numerically.
To prepare the ground for posterior consistency, we will rewrite our model using different notations just so it is

aligned with the model setup of Jiang.31 Our proof of consistency is in line with Jiang’s31 paper. Similar notations

will ease understanding of the proof.
Let Dn ¼ {y;X1,. . .,XPn: y 2 {0,1},Xi 2 Rn,i¼ 1,. . .,Pn} denote a dataset of n observations each consisting of Pn

predictors where Pn can increase with increasing n. We want to model this data using logistic regression. Let nn
denote a chosen (subset) model, and |nn| denote the model size of nn. Note that, here nn is the sum of all dummy

variables (factor levels) of the groups that are chosen in the subset model. Let us call G*, the number of selected

groups then G* � nn. A major difference of this and Jiang’s31 setup is the multivariate bg, g¼ 1,. . .,G. An

interesting thing to note is that, if we express our setup in terms of the dummy variables, then this layout is

similar to what Jiang31 proposed. Thus, when the chosen model is nn, we are really considering our chosen group

size to be G* and the model size to be
PG	

g¼1 mg ¼ jnnj. To make the proof here in line with Jiang’s31 paper, we

express the chosen model in terms of the dummy variables rather than the groups. Clearly, this is an extension of

Jiang’s31 model since we consider a grouped structure for bs. Conditional on nn, the regression coefficients

bnn jsnn�N 0;Vnnð Þ

where Vnn is a |nn|� |nn| covariance matrix and a function of snn . Here, bnn ¼ b	T1 ; . . . ; b	TG	

� �
and snn ¼

s	1; . . . ; s
	
G	ð Þ denote the vector of true regression coefficients and true variance parameters, respectively, such

that
PG	

g¼1 mg ¼ jnnj. Let X	
1; . . . ;X

	
nn

� � 
 fX1; . . . ;XPn
g denote the predictors chosen in model nn. Note that

Vnn ¼

s	21 Im1
0 � � � 0

0 s	22 Im2
� � � 0

..

.

0

..

.

0

. .
. ..

.

� � � s	2G	ImG	

0
BBBBB@

1
CCCCCA

and s2g�indGamma
mgþ1
2 ; k

2

2

� �
; g ¼ 1; . . .G. Let model nn have the priorQ

nnjp0ð Þ ¼ pPn�jnnj
0 1� p0ð Þjnnj, and p0�Beta(a,b)

where a and b are pre-specified hyperparameters. Thus

Y
nnð Þ ¼ Betaðaþ Pn � jnnj; jnnj þ bÞ

Betaða; bÞ ; and P bnn
� � ¼ Z P bnn ; s

2nn
� �

ds2nn ¼
YG	

g¼1

Z 1

0

P bnn js2nn
� �

P s2nn
� �

ds2g

¼
YG	

g¼1

Z 1

0

e
�bTg bg

2s2g

2ps2g
� �mg

2

k2ð Þ
mgþ1

2 s2g
� �mgþ1

2 �1

e�
k2s2g
2 ds2g

Substituting a2g ¼ 1
s2g
we have

P bnn
� � ¼YG	

g¼1

k2ð Þ
mg
2 e

�k
ffiffiffiffiffiffiffi
bTg bg

p
2pð Þ

mg�1

2

Z 1

0

k2

2p a2g
� �3

 !1
2

e
�k2bTg bg

2k2a2g
a2g� kffiffiffiffiffiffi

bTg bg

p� �2

da2g
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The term in the integral is an Inverse Gaussian density i.e. ag
2� Inverse Gaussian kffiffiffiffiffiffiffi

bTg bg
p ; k2
	 


, thus the
integrals integrate to one for all g¼ 1,. . .,G*. Therefore

P bnn
� � ¼YG	

g¼1

k2ð Þ
mg
2 e

�k
ffiffiffiffiffiffiffi
bTg bg

p
2pð Þ

mg�1

2

(8)

Let nn be the model obtained from the median thresholding posterior probability and n	n be the true model. We
want to show that the model nn converges to the true model nn

* as the sample size n becomes sufficiently large.
Define f	 as the true density under model n	n and f as the density proposed under model nn. Hellinger distance
between f and f	 is defined as.

d f; f	ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZZ ffiffi

f
p

�
ffiffiffiffi
f	

p� �2
ty dy
� �

txðdxÞ
s

To investigate posterior convergence, we formulate the following theorem based on Theorem 4 in Jiang’s31

paper. We consider logistic regression in this paper with a density of the form

p	ðyjxÞ ¼ expfaðh	Þyþ bðh	Þ þ cðyÞg � fðy; h	Þ

where h*¼ xTb* is the linear parameter, a(h) and b(h) are continuously differentiable, and a(h) has non-zero
derivative. The mean function

l	 ¼ E yjxð Þ ¼ � b0 h	ð Þ
a0 h	ð Þ � w xTb	

� �
¼ eh

	

1þ eh
	

Thus w is the inverse of the logistic link function. Assume that limn!1
PG

g¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
b	Tg b	g

q
< 1. For simplicity,

let n be the corresponding subset model for which |b| > 0 and let rn be the prior expectation of model size |n|.
Define

D rnð Þ ¼ inf
n:jnj¼rn

X
j:j 62n

jb	j j < 1; B rnð Þ ¼ sup
n:jnj¼rn

ch1 V�1
n

� �
�B rnð Þ ¼ sup

n:jnj¼rn

ch1 Vnð Þ; and

let, B
�
n ¼ supn:jnj �Kn

ch1 Vnð Þ where Kn is the maximal model size. Let D Rð Þ ¼ 1þ R�
supjhj �R ja0 hð Þj: supjhj �R jw hð Þj for any R> 0. Here, ch1(Vn) and ch1ðV�1

n Þ are the largest eigenvalues of Vn and

Vn
�1, respectively.
Let �n 2 ð0;1� for each n and n�n � 1 and assume the following conditions hold

1. Knlog
1
�2n

� �
 n�2n

2. Knlog Pnð Þ  n�2n

3. Knlog D Kn
�Bnn�

2
n

kn

� �� �
 n�2n

4. rn  Pn

5. rnlog �BnðrnÞ  n�2n and DðrnÞ  n�2n

6. log rn
Pn

� � � � 4n�2n
Pn

7. mg is such that
PG	

g¼1 mg  Pn; 8 g ¼ 1; . . . ;G

We will replace k by kn since k and sg
2, g¼ 1,. . .,G* are dependent on n. Also, kn is inversely proportional to the

sum of all sg
2s.
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Theorem 1. Assume the prior setting on (8) is used and the Assumption (A1) holds. Let P{.} denote the
probability measure for the data Dn. Assume, G<Pn, 1 � kn � B(rn),|xj| � 1 for all j and
limn!1

PG
g¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
b	Tg b	g

q
< 1

where Pn is a nondecreasing sequence in n. Also, let Vn be such that B
�
n � 4

Let en be a sequence such that �n 2 ð0;1� for each n and n�2n � 1 and sg
2<1, g¼ 1,. . .,G*. Then, we have,

(i) For some co > 0

lim
n!1

P p d f; f	ð Þ � �njDn
�  � 1� e�c0n�

2
n

n o
¼ 1; and

(ii) For some C1 > 0 and for all sufficiently large n

P p d f; f	ð Þ > �njDn
�  � e�0:5c1n�

2
n

n o
� e�0:5c1n�

2
n

Proof of theorem 1 is part of the supplemental material.

5 Simulation

Before applying the group level Bayesian selection method on the brain image data, we run a simulation study.
The simulation study has the unknown parameters in control and tests the method on controlled inputs. We work
on two different scenarios where the first case is high-dimensional while the second case is large n small p scenario.

(S1) The number of observations is 60 and there are 16 predictors each with 5 levels. Thus the number of
parameters here is really 80. So, we are essentially looking at a small n large p problem here. The setup here is
adapted from Example 2 of Xu and Ghosh7’s paper. We define the jth predictor as Xgj ¼ zg þ zgj, where zg and zgj
are independent standard normal variables and g¼ 1,. . .,16, j¼ 1,. . .,5. Thus, the predictors in a group are cor-
related but the predictors in different groups are independent. Assign true parameter values as follows:
b¼ ((7,6,3,4,5),0,(4,5,6,10,7),0,0,0,0,0,0,0,0,0,0,0,0,(2,3,4,5,6)) where 0 is a zero vector of length 5. Use the simu-
lated X and b to generate 60 independent Bernoulli random values using the logit link. Here, 40 observations are
used to train the model and the rest are used as a test dataset.

(S2) The number of observations is 100 and there are 4 predictors each with 10 levels which makes p¼ 40. The
design matrix is generated exactly as in Scenario 1. Let b¼ (0,2,0,2) where 0 and 2 are vectors of length 10 with all
elements 0 and 2 respectively. Use the simulated X and b to generate 100 independent Bernoulli random values
using the logit link. Sixty randomly selected rows were used as train dataset and the remaining as test data.

Hyperparameters, for both cases, a and b were both set to 1.5. Twenty thousand Monte-Carlo iterations were
implemented. Twenty-eight bootstrapped samples were used to average out bias in estimates.

Table 1 summarizes the true and false positive rates and the negative log-likelihood of the two examples
mentioned above. Both the methods are able to identify the true variables although the frequentist group lasso
has a high false positive rate. This indicates that the group lasso tends to select more variables for an optimal
tuning parameter. On the other hand, the model selected by median thresholding gives excellent result in terms of
variable selection. We see that the method proposed in this paper gives a smaller negative log-likelihood indicating

Table 1. Mean (standard error), true/false positive rate, and negative log-likelihood in 28 simulations.

Scenario Bayesian spike and slab group lasso Frequentist group lasso

S1 True positive rate

False positive rate

1.00(0.00)

0.00(0.00)

1.00(0.00)

0.78(0.50)

Neg log-likelihood 2.65(0.53) 6.52(0.57)

S2 True positive rate

False positive rate

1.00(0.00)

0.00(0.00)

1.00(0.00)

0.32(0.24)

Neg log-likelihood –2.35(2.31) 5.45(1.59)
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a better model fit. To be more stringent about feature selection, we also look at the credible intervals of the

estimated coefficients. Our investigation shows all the selected features are statistically significant based on the

credible intervals. Since, our motivation is classification here, we omit these results. Thus, we see that in a

simulated dataset, the median thresholding method is able to classify variables very well as compared to the

conventional group lasso method when we have variables that have a structured correlation.

6 Application to ADNI MRI data

The MRI data used in this section of the paper were obtained from ADNI database. The main objective of ADNI

has been to test whether serial MRI, PET, other biological biomarkers, and clinical and neuropsychological

assessment can be used to detect dementia or measure its progression. Both normal aging and AD patients

have brain region atrophies but it is essential to identify the abnormalities that lead to dementia. Some studies

are done to study the differences of brain atrophy in these two categories of subject (Double et al.32). Such studies

have shown that there is a significant difference in the atrophies of normal aging and AD patients, so we use this

idea to classify the subjects. In this paper, we delve into classification of AD patients from normally aging control

(CN) subjects at the baseline and estimation of parameters of selected volumetrics. The parameter estimates give

us the log of odds of being AD at baseline for a subject with a given set of volumetric measurements. Thus,

baseline volumetric values for AD and normal controls from ADNI dataset serve our purpose. ADNI data are

collected from 2003 onwards by National Institute of Aging (NIA), National Institute of Biomedical Imaging and

Bioengineering (NIBIB), U.S. Food and Drug Administration (FDA), and a few pharmaceutical companies as a

public–private partnership. The ADNI project is a large project involving subjects across USA and Canada from

more than 50 sites. This initiative was launched to develop new treatments and follow subjects through time to

monitor the effectiveness of the treatments. For more information about ADNI, visit www.adni-info.org.
The volumetric segmentation and cortical reconstruction of the brain is done with the help of freely available

software FreeSurfer. An early version of the longitudinal image processing framework (Reuter et al.33) is used to

process the sequential scans. This process does motion correction and averaging of multiple volumetric TI

weighted images, removes non-brain segments, automates Talairach transformation, segments subcortical

white matter (WM) and deep gray matter (GM) volumetric structures. It also automates topology correction

and surface deformation of the brain. For a detailed guide, please refer to the UCSF FreeSurfer Methods

documented by Hartig et al.34 Due to advancement of technology in the computing area, quantitative assessment

of brain volumes, obtained through volumetric MRI is being used extensively for studies involving AD.

Volumetric measurements are mainly based on brain segmentation done at reliable MR centers.
Many studies have been done to identify the ROIs associated with AD but using the entire brain segmentation

to identify four different volumetric aspects of a region has not been explored. Sabuncu et al.35 observed that

baseline thickness in AD vulnerable cortical regions reduced significantly in AD patients. A particular attribute

measurement of a brain subregion may be more indicative of AD atrophy than others. Thus, we are interested in

not only selecting the atrophied brain subregion but also identifying which of the volume, surface area or thick-

ness changes differ significantly in AD subjects from healthy controls. This technique includes all available

subregion data in the model and identifies the subregions that are potentially associated with AD. Previous

studies have isolated one or a few brain regions and used their volume measurements as a predictor of AD or

MCI from CNs (Jack et al.36,37). We want the model to automatically select the atrophied regions rather than

subsetting a brain region before start of the analysis. Classification of AD from CN has been done using FDG-

PET scan (Herholz et al.38) using comparative statistical methods like t-statistics but researchers are yet to explore

variable selection techniques using the entire volumetric data. Wang et al.39 used Haar wavelets to identify ROIs

using voxel level data for dimension reduction. This method identifies ROIs successfully but does not narrow

down the brain hemisphere of the ROIs. Since, our data are present for each region for the left and right

hemispheres, we are able to identify the exact part of the ROI that is more significantly associated with AD.

For the analysis, we use AD and CN patients to distinctively understand the difference of brain regions that cause

a subject to be cognitively normal or progress to AD.
We have used the longitudinal processing data for our analysis. The demographic characteristics of the 421

subjects are given in Table 2. The age and sex distribution in our dataset shows that the data are not skewed with

respect to these two variables. Also, the minimum and maximum age for AD is 55.1 and 90.9, respectively, and

that of CN is 59.9 and 89.6, respectively. Thus, the effect of age on the outcome has been controlled for in the

ADNI dataset.
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We have used baseline data of 421 subjects of whom 191 have AD and 230 are cognitively normal subjects.

There are 72 predictors (brain regions segmented with FreeSurfer) with four levels each namely, volume, area,

thickness average, and thickness standard deviation. Forty-six brain regions had volume data only. The regions

marked “Unknown” and “Undetermined” were discarded beforehand because these regions were not identified in

the MR scans. We used all the remaining 116 brain regions (single and four-leveled) as predictors for dementia.

Our objective is to be able to select an optimal model that identifies the important brain regions for identifying the

two kinds of brain cognitive functionality. The brain regions are segmentation of both GM and WM. Studies

suggest that the GM is associated with cognitive disorders in elderly people. We keep both GM and WM to test

the efficacy of our model i.e. if the model is efficient in selecting the correct brain regions. The analysis to identify

the most significant regions from the entire brain region is done. Variable selection selects the significant

brain region from a large collection of brain regions and then the model successfully classifies the subjects

using the test dataset.
We have a logistic model for the two outcomes of the response variable. Around 70% of the data is used to

train the model. The prior placed on the coefficients is a spike and slab type prior that encourages zero estimates

for predictors which are not significant. The model is selected using median thresholding method. We run 10,000

iterations of the Monte-Carlo Markov Chain (MCMC) chain of which the first 5,000 are used as burn-ins. The

usual convergence diagnostics are performed.
Two hundred and ninety-five subjects were randomly selected from the 421 subjects to train the model.

The median thresholding model selects 29 out of the 116 brain subregions. These regions correspond to

ROIs, namely, right bankssts, right pallidum, pars opercularis, left pars orbitals, right precuneus, putamen,

right anterior cingulate cortex, superior frontal, entorhinal cortex, supramarginal gyrus, right transverse tempo-

ral, left hippocampus, left inferior lateral ventricle, middle temporal gyrus, inferior temporal gyrus, left precentral

gyrus, right fusiform gyrus, left parahippocampal, paracentral, third ventricle (Feng et al.40), and right inferior

parietal. We now want to understand if all these regions’ attributes are statistically significant. Some regions have

negligible amount of contribution in the model thus making the credible interval of the feature exclude the

corresponding subregion. We only keep the subregions and the measurement attributes in our model which are

statistically significant as given by the corresponding credible intervals. This result tells us that only the thickness

average, thickness SD, surface area, volume or a combination of these attributes can be significant for a subregion

while in other cases all these four attributes can be significant.
The statistically significant ROIs are given in Table 3. Previous studies have established the association of these

regions in AD. Volumes of right entorhinal cortex are severely diminished in AD patients. The other regions

selected are also coherent with relevant literature (Juottonen et al.,41 Galton et al.42). The precentral gyrus

controls motor skills, middle temporal gyrus regulates semantic memory processing, hippocampus, parahippo-

campal and entorhinal regulate memory and navigation. Putamen, pallidum, transverse temporal and bankssts

are all known to be affected by AD (Clerx et al.43). Recent studies have separately analyzed all these regions and

found atrophies in those areas. The proposed method identifies a subset of all atrophied regions and then selects

fewer regions as discriminative features for classification.
The functions of the selected regions also intuitively implicate the precision of the model. Zhang et al.10

classified AD and CN using support vector machine (SVM) thus leading to non-interpretability of the associated

coefficients.
The method achieved fairly high accuracy of 80%. Cuingnet et al.44 classified AD and CN based on ROIs but

they restricted their analysis to a few selected ROIs namely the entorhinal thickness, supramarginal cortex thick-

ness and hippocampal volume. Their sensitivity ranged from 69% to 70% whereas our method gives a sensitivity

of 76%. The specificity in their study (90%) is, however, higher than ours (83%). These two studies are, however,

not directly comparable except that they are both classification studies because the datasets used in these studies

are different. The drawback of their method is that they pre-select a few ROIs and perform the classification

Table 2. Demographics of patients in ADNI data used for analyses.

Category Gender: Male (%) Age in years: Mean (SD)

AD (n¼ 191) 100 (52.36%) 75.27 (7.46)

CN (n¼ 230) 120 (52.17%) 75.86 (5.01)

SD: standard deviation.
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unlike our method. On the other hand, the proposed method is based on statistical foundations that is accounting

and measuring uncertainties due to randomness in the data set.
Our logistic model coded CN as 1 and AD as 0 so the parameter estimates should be interpreted

accordingly. Table 3 gives the mean parameter estimate and standard error (within parentheses) of the

selected ROIs.

7 Discussion

In this paper, we propose a Bayesian approach of variable selection with spike and slab prior to identify cogni-

tively healthy controls from Alzheimer’s patients. This method uses whole brain parcellation data to classify

dementia as well as interpret the association of each significant volumetric measure of a brain subregion. This

technique captures the structured correlation in this type of data to retain all levels of the subregion that are

disease related. The Bayesian approach guarantees better standard error estimates. Also, the median thresholding

method for posterior model selection together with the use of spike and slab prior is a more efficient method than

the frequentist group lasso method as shown in the simulation study. Liang et al.,45 developed a Bayesian subset

selection method for GLMs which can select individual variables only. In their method, they place a prior on the

model to perform subset selection unlike our approach of using a spike and slab prior which directly drops out

variables in the many Monte Carlo iterations. Our median thresholding, as opposed to their Maximum a poste-

riori (MAP) posterior probability, is able to choose the best model without comparing information criterion type

quantities among several candidate models. Thus, the spike and slab prior median thresholding Bayesian group

lasso has attractive properties of high-dimensional variable selection and performs efficiently with structured

correlated covariates. Most of the other dimension reduction techniques are unable to tackle correlated variables

in variable selection.
The significant regions selected by our model are identified from a large number of subregions thus accounting

for the effect of the whole brain while performing dimension reduction. Wang et al.39 in their paper have intro-

duced a dimension reduction technique using Haar wavelet based on voxel level data with ADNI PET data. Also,

their method builds on continuous outcomes. Our approach builds the model with the MRI brain parcellated

volumetric data which are a direct indicator of dementia. This Bayesian formulation not only tackles ANOVA

type dummy variables but also deals with the high dimension problem. The simulation results show that this

method is effective in both low and high dimensions. The greatest advantage of this method is that it considers all

the subregions while building the model and efficiently drops the ones that are not disease related and also easily

interpret the risk of dementia from the parameter estimates. Thus, this method is effective in finding a needle from

a stack of hay. This is a novel contribution to classification for AD to the best of our knowledge.

Table 3. Mean (standard error) of parameter estimates of selected ROIs.

ROI Volume Surface area Cortical thickness avg. Cortical thickness SD

Right entorhinal cortex 2.97 (0.03) 1.83 (0.02) 2.14 (0.01) 1.69 (0.03)

Right pallidum –0.27 (0.12) a a a

Right pars orbitals b b –0.33 (0.16) b

Right precuneus 0.39 (0.05) –0.42 (0.07) 1.0 (0.09) b

Right putamen –0.21 (0.07) a a a

Left anterior cingulate –0.46 (0.12) –0.12 (0.04) 0.15 (0.05) 0.09 (0.04)

Right transverse temporal b b –0.54 (0.22) b

Left entorhinal cortex b 0.22 (0.07) 0.21 (0.07) –0.41 (0.13)

Left precentral gyrus 0.25 (0.08) 0.38 (0.12) 0.45 (0.15) 0.25 (0.09)

Left parahippocampal gyrus 1.97 (0.11) 1.90 (0.11) 2.0 (0.11) 2.07 (0.11)

Right bankssts 0.06 (0.02) b b b

Left middle temporal gyrus 1.93 (0.04) 1.57 (0.04) 1.91 (0.02) 1.63 (0.03)

Left hippocampus 1.50 (0.02) a a a

All ROI measurements in the table are statistically significant with the following exceptions.
aMeans these region measurements were not captured in data.
bMeans that these regions were not statistically significant although the region was selected by median thresholding.

ROI: region of interest; SD: standard deviation.
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